

Climate Change Phase II Study Scope, Method, and Inputs

NYISO ESPWG

February 27, 2020

Overview of Assignment

Modeling Structure and Inputs

Potential Model Scenarios

Next Steps

Context and Assignment

- The combination of changes to New York's climate and changes to power sector supply and demand from climate-focused law and policy may introduce new reliability considerations for the New York grid
 - New York's Climate Leadership and Community Protection Act (CLCPA) directs that:
 - By 2030, 70% of all electricity in the state will be provided by renewable resources ("70 x 30")
 - By 2040, the statewide electrical demand system will be "zero emissions;" meaning that 100% of all electricity be provided by carbon-dioxide free resources ("100 x 40")
 - These requirements will increase reliance on weather-dependent renewable resources
 - Trends towards electrification of heating and transportation may significantly impact the quantity and shape of electricity demand
 - Both demand and supply may be affected by impacts from climate change
- Question: What are the conditions and the risks associated with these factors in New York?

Context and Assignment

- Analysis Group (AG) task:
 - Assess energy security for the New York Control Area ("NYCA") electric grid for a forward-looking period under various assumptions and scenarios related to the impact of climate change
 - Provide a report documenting the approach and findings
- Conditions to review:
 - Extended periods in three seasons (winter, summer, off-peak) in a future year (2040)
 - Deterministic assessment based on forecasts of demand, supply and storage
 - Identify circumstances (if any) under which resources are insufficient to meet load plus reserves absent emergency actions, for NYCA and relevant load zones/regions
 - Evaluate energy adequacy under a wide range of future scenarios related to weather and power system configurations

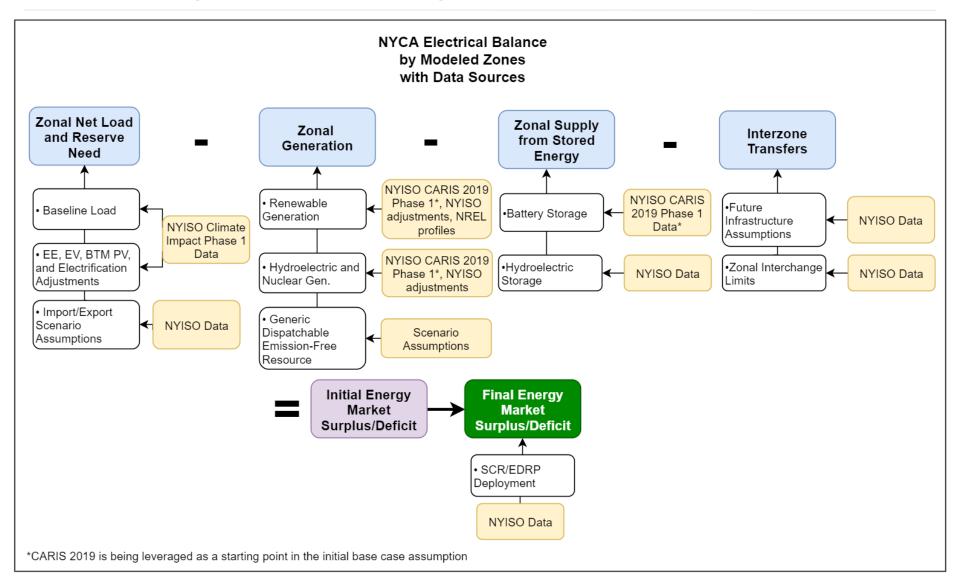
Overview of Assignment

Modeling Structure and Inputs

Potential Model Scenarios

Next Steps

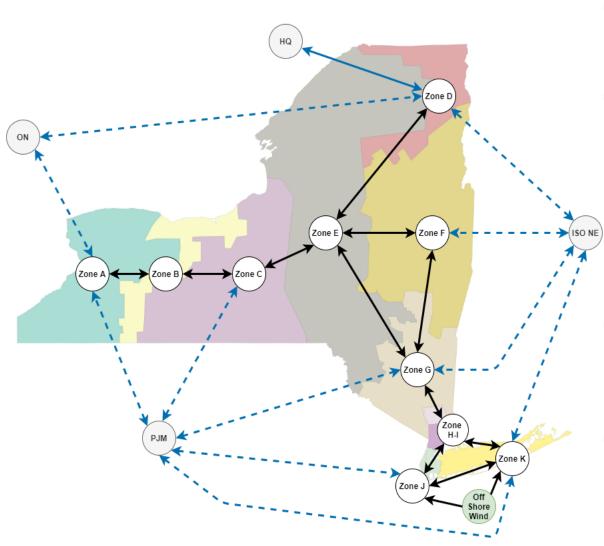
Model Structure and Inputs



Model Overview

- Modeling Year: 2040
- Three modeling periods: Winter, Summer, and Off-peak
- Proposed modeling time frame: 30 days per period
- Quantitative deterministic model "stacking order" analysis
 - Not a production cost or transmission security modeling exercise
- Resource starting assumptions consistent with 2019 CARIS Phase 1 "70x30" case, adjusted for potential 2040 conditions
- Hourly electric demand during normal conditions based on Climate Impact Phase I load forecasts, which adjust for increases in:
 - Behind the meter PV
 - Electric vehicle demand
 - Energy efficiency
 - Heating and cooling electrification
- Model compares hourly generation and storage discharge to hourly load plus reserves, accounting for inter-zone transmission constraints

Model Setup Diagram: Electric Balancing



Public information sources used for renewable generation profiles

Model Setup Diagram: Electric Order and Zones

- Load and generation will be aggregated by NYISO zone
- Transmission modeling will include potential transfers between all 11 zones, with expected line limits in 2040
 - Includes Western NY and AC Public Policy Transmission
- Will assume N-1
 Normal Transfer
 Criteria limits between
 all zones
- Model will include nested reserve zones

Model Structure and Inputs

Model Overview

- Initial assumption is no fossil generation, consistent with CLCPA rules for 100% carbon free resources by 2040
 - Considering scenarios with certain alternative low/no-carbon combustion fuels, such as renewable natural gas or biodiesel
 - Will also consider scenarios involving various levels of imports, depending on assumed carbon impact

Overview of Assignment

Modeling Structure and Inputs

Potential Model Scenarios

Next Steps

Potential Model Scenarios and Assumptions

Terminology

- We use "scenarios" to indicate reference case and alternative assumptions with respect to demand, resources, and policies
- We use "physical disruptions" to represent unexpected/additional losses of power system generation or infrastructure (power plants, transmission facilities)
- Assumptions and scenarios will be combined into a manageable number of "cases" (model runs) that span the range of potential futures
- Scenarios examples
 - Reference Case
 - State Policy Case State Clean Energy Standards are met
 - CLCPA Case State Policy Case plus additional electrification
- Physical Disruptions examples
 - Loss of power plant capacity
 - Reduced wind/solar output
 - Extreme heat/cold
 - Reduced hydro output from drought
 - Transmission failures
 - Major storms

Overview of Assignment

Modeling Structure and Inputs

Potential Model Scenarios

Next Steps

Analysis Group/NYISO

- AG to complete model development
- AG to work with NYISO to complete and input model data/assumptions (with stakeholder input)
- Run model cases, generate tabular/graphical results
- Draft report, final report
- Present to stakeholders at various stages

Proposed Schedule

- Today: AG presentation of high-level overview of model structure and inputs
- April 2020: AG discussion of feedback on proposed assumptions and scenarios
- May 2020: Continued discussion of assumptions and scenarios
- June 2020: AG presentation of initial analysis findings
- July 2020: AG presentation of final findings
- September 2020 AG Final Report

Contact

Paul Hibbard, Principal 617 425 8171 phibbard@analyisgroup.com